Integration guide for Secryn with Model Context Protocol.
The Model Context Protocol (MCP) enables seamless integration between Secryn and AI models, allowing secure data access and operations through a standardized interface.
npm install @secryn/mcp
import { MCPClient } from '@secryn/mcp'
const client = new MCPClient({
apiKey: process.env.SECRYN_API_KEY,
endpoint: 'https://api.secryn.com/v1'
})
await client.connect()
The Secryn MCP provides the following tools:
const resources = await client.query('resources', {
filter: { status: 'active' },
limit: 50
})
const newResource = await client.create('resources', {
name: 'My Resource',
metadata: { type: 'example' }
})
const updated = await client.update('resources/res_123', {
name: 'Updated Resource Name'
})
await client.delete('resources/res_123')
try {
const resource = await client.get('resources/res_123')
} catch (error) {
if (error.code === 'NOT_FOUND') {
console.log('Resource does not exist')
} else if (error.code === 'UNAUTHORIZED') {
console.log('Invalid API key')
} else {
console.log('Unexpected error:', error.message)
}
}
For large datasets, use streaming to handle data efficiently:
const stream = client.stream('resources', {
filter: { created_after: '2024-01-01' }
})
for await (const batch of stream) {
console.log(`Processing ${batch.length} items`)
}
const client = new MCPClient({
apiKey: process.env.SECRYN_API_KEY,
endpoint: 'https://api.secryn.com/v1',
timeout: 30000,
retries: 3,
batchSize: 100,
cacheEnabled: true,
cacheTTL: 300000,
debug: false
})